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Abstract

The frequency of disaster occurrences highlights the importance of scientifically and logically
selecting emergency suppliers to ensure the timely distribution of relief provisions to affected
regions. The abrupt, unpredictable, and intricate nature of disasters presents formidable
challenges to the improvisational emergency supplier selection (IESS). It demands swift
decision-making within constrained time frames amidst information scarcity, necessitating
coordinating various stakeholders and identifying potential Pareto optimal solutions. There-
fore, this study proposes a novel multi-attribute decision-making (MADM) approach, the
Partial Ordinal Priority Approach (POPA), tailored to address the challenges inherent in
IESS. POPA utilizes easily accessible and stable ranking data, encompassing expert pref-
erence information, as model input. This study derives the decision weight optimization
model and the adversarial Hasse diagram of the partial-order cumulative transformation set
based on ranking preference information. POPA can simultaneously determine the weights
of experts, criteria, and alternatives, generating the adversarial Hasse diagram. This dia-
gram streamlines the redundant dominance structure among alternatives and furnishes infor-
mation on Pareto optimal alternatives, suboptimal alternatives, and alternative clustering
details. To validate the effectiveness of POPA, a case study on IESS for the Zhengzhou
mega-rainstorm disaster is conducted with sensitivity and comparative analysis. Overall,
POPA facilitates swift and stable decision-making while considering potential Pareto op-
timal solutions amidst time constraints, high information uncertainty, and involvement of
multiple stakeholders.
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1. Introduction

In today’s high-risk society, disasters such as earthquakes, floods, terrorist attacks, and
pandemics pose severe threats to human life, property, and social stability (Wang et al.,
2022). These disasters often exhibit characteristics of suddenness, uncertainty, and com-
plexity, making accurate prediction and control difficult (Song et al., 2024). When disasters
strike, they often result in infrastructure damage, transportation disruptions, communica-
tion breakdowns, and shortages of emergency supplies, causing significant loss of life and
property (Zhang et al., 2022). For instance, during the outbreak of the COVID-19 pan-
demic in Wuhan, Hubei province, the unique nature and rapid spread of the virus severely
impacted the medical system, leading to a shortage of medical resources in the region. The
surge of infected patients overwhelmed hospitals, and there was a scarcity of personal pro-
tective equipment like medical masks and protective suits, putting frontline medical workers
at a high risk of infection. They even had to reuse protective equipment, further increasing
the risk of transmission. Two months after the COVID-19 outbreak, the country allocated
40 million medical masks, 5 million sets of protective suits, and 5,000 sets of infrared ther-
mometers to meet the urgent needs of healthcare personnel in Hubei province (People’sDaily,
2020). During disaster response and emergencies, the stability and reliability of the sup-
ply chain are crucial to ensure the timely delivery of supplies to affected areas (Liu et al.,
2022a). Swift, stable, and sufficient emergency supplies can shorten response times, enhance
rescue effectiveness, ensure personnel safety, and reduce disaster losses. Therefore, the scien-
tific and rational selection of emergency suppliers, a typical multi-attribute decision-making
(MADM) problem, is essential to emergency decision-making (Zhang et al., 2022; Liao et al.,
2020; Mahmoudi and Javed, 2022). However, in the face of extreme disasters, there is often
a need for improvisational emergency supplier selection (IESS), when pre-disaster emer-
gency supplier selection often fails to meet demand. Unlike traditional MADM problems,
the characteristics of disasters impose new requirements on IESS: decisions need to be made
rapidly in a limited time, with high information uncertainty and the involvement of multiple
stakeholders (Su et al., 2022; Pamucar et al., 2022; Li et al., 2022a).

Over the past decade, MADM technique has emerged as a crucial instrument for address-
ing IESS, capable of addressing inherent conflicting objectives, diverse data, and significant
uncertainty within IESS. At present, the predominant approach to tackling the problem of
IESS relies on MADM methods such as GRA (Zhang et al., 2022), TOPSIS (Afrasiabi et al.,
2022; Ge et al., 2020), VIKOR (Zhu and Wang, 2023; Zhang et al., 2023) (Zhu and Wang,
2023; Zhang et al., 2023), TODIM (Liu et al., 2022a; Su et al., 2022; Wang et al., 2023),
BWM (Tavakoli et al., 2023; Song et al., 2024), DEMATEL (Gökler and Boran, 2023; Wu
and Liao, 2024). Specifically, due to the limited availability and challenging acquisition of
objective data in the decision-making process of IESS, current research predominantly relies
on subjective decision data from experts. The primary forms include evaluation values (Ge
et al., 2020; Sureeyatanapas et al., 2018), semantic values (Li et al., 2022b; Pamucar et al.,
2020; Wang et al., 2023), and pairwise comparison values (Wang et al., 2023; Yang et al.,
2020). Furthermore, some research extends existing MADM methods using grey system
theory (Yang et al., 2020; Zhang et al., 2022), fuzzy set theory (Ge et al., 2020; Qin and
Liu, 2019), rough set theory (Rong and Yu, 2024; Jiang et al., 2020; Sun et al., 2020) to ad-
dress the high uncertainty and substantial ambiguity in the decision-making process of IESS.
When aggregating opinions and preferences from multiple stakeholders, most studies em-
ploy average-based techniques, such as weighted averages, fuzzy averages, and mean square
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deviation methods (Liu et al., 2022a; Ning et al., 2022; Zulqarnain et al., 2021). Only a few
studies utilize social network analysis to aggregate expert opinions from the perspective of
consensus and divergence within the expert group (Liu et al., 2022b).

Through the literature review, four critical limitations in current research have been
identified: (1) Most existing MADM methods in IESS only provide a total-order ranking of
alternatives, lacking the capability to identify potential Pareto optimal solutions. However,
in the practical application of IESS, it is crucial to enhance decision-making transparency and
reliability by effectively identifying and prioritizing Pareto optimal alternatives (Grierson,
2008). (2) Most existing MADM methods in IESS overly rely on subjective opinions from
experts in the form of evaluative values and pairwise comparison values (Afrasiabi et al.,
2022). Nevertheless, stakeholders from different backgrounds demonstrate differences in
professional knowledge and the extent of available information. This variability can lead
to notable discrepancies in expert judgments, and obtaining these opinions may involve
considerable time consumption. (3) Most existing MADM methods in IESS heavily rely on
algebraic logic for integrating viewpoints of multiple stakeholders (Ataei et al., 2020). This
reliance may lead to neglecting the valuable insights and preferences of experts, resulting
in decision outcomes deviating from the actual circumstances. Consequently, it adversely
affects the accuracy and effectiveness of the IESS process. (4) Most existing MADMmethods
in IESS often integrate techniques of data standardization, expert opinion aggregation, and
pre-acquisition of weight information based on classical MADM methods. Nevertheless,
the above approach unavoidably amplifies the complexity and error probability of MADM
models.

To overcome the above limitations in IESS, this study endeavors to introduce a MADM
approach (1) utilizing more available and stable decision data as IESS inputs to the MADM
model; (2) dispensing with the necessity for integrating data standardization, expert opinion
aggregation, or pre-weight acquisition approaches; and (3) expeditiously generating decision
outcomes for experts, criteria, and alternatives in MADM, while considering Pareto op-
timality condition. Therefore, this study proposes the Partial Ordinal Priority Approach
(POPA) for solving the IESS problem. Specifically, the proposed approach is based on
the Ordinal Priority Approach (OPA) with the ranking data of the criteria, experts, and
alternatives as model inputs. Based on the preference information embedded in ranking
data, this study derives a decision weight optimization model and partial-order cumulative
transformation to generate the most simplified dominance structure of alternatives (adver-
sarial Hasse diagram). The proposed approach can simultaneously determine the weight
of experts, criteria, and alternatives and generate dominance structure with information on
Pareto optimal alternatives, sub-optimal alternatives, and clustering details. Ultimately, the
computed weight outcomes are integrated with the adversarial Hasse diagram to address the
IESS while considering the Pareto optimality condition and expert preference information.

The remaining parts of this paper are organized as follows: Section 2 conducts a literature
review of the MADM approach in IESS. Section 3 outlines the criteria for IESS. In Section
4, the research method (POPA) is presented. Section 5 employs the IESS process for the
Zhengzhou mega-rainstorm disaster as a case study to demonstrate and validate POPA.
Lastly, Section 6 presents the conclusions and outlines future directions.
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2. Literature Review

When confronted with natural disasters or other emergencies, organizations and govern-
ments require swift access to emergency supplies to cater to people’s fundamental needs and
facilitate disaster relief operations (Zhang et al., 2022). The process of selecting emergency
suppliers assumes a pivotal role, as their product quality, service responsiveness, and supply
chain reliability directly impact the efficacy of rescue operations and the well-being of those
affected (Chen et al., 2020). The selection of emergency suppliers can be conceptualized as
a classical MADM problem (Liao et al., 2020; Mahmoudi and Javed, 2022; Mousavi et al.,
2020; Shakeel et al., 2020). In current research concerning emergency supplier selection,
scholars typically execute it in three steps, as illustrated in Fig.1 (Liu et al., 2022a). The
initial step involves gathering decision-making data concerning evaluation criteria, experts,
and alternatives, encompassing historical records, statistical data, or expert opinions. The
subsequent step entails determining the weights assigned to the criteria and experts. Ul-
timately, rational MADM methods are utilized to ascertain the comprehensive evaluation
value for ranking the alternatives. However, it is noteworthy that the selection of emergency
suppliers mainly focuses on the emergency preparedness phase, and the decision-making
process is typically unrestricted by severe time pressures (Li et al., 2022b; Liu et al., 2022a).
Nevertheless, disaster events often entail complexity and uncertainty, leading to the pos-
sibility that pre-selected emergency suppliers may not adequately meet the requirements
for disaster response (Pamucar et al., 2022). In such instances, improvisational selection of
emergency suppliers becomes essential, exhibiting characteristics distinct from conventional
emergency supplier selection. Specifically, IESS must efficiently acquire and aggregate ex-
pert opinions, considering preferences information, to achieve stable decision outcomes in
situations characterized by intense time pressure, poor quality or difficult accessibility of
decision data, and the involvement of multiple stakeholders.

Figure 1: Typical steps of the MADM for IESS
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In the present IESS research, widely utilized MADM methods encompass prominent
techniques such as GRA (Zhang et al., 2022), TOPSIS (Afrasiabi et al., 2022; Ge et al., 2020),
VIKOR (Zhu and Wang, 2023; Zhang et al., 2023), TODIM (Liu et al., 2022a; Su et al.,
2022; Wang et al., 2023), BWM (Tavakoli et al., 2023; Song et al., 2024), MARCOS (Rong
and Yu, 2024), MACBETH (Pamucar et al., 2020, 2022), DEMATEL (Gökler and Boran,
2023; Wu and Liao, 2024), and others. Considering the challenges associated with acquiring
data in emergency situations, only a few studies incorporate objective decision data, while
the majority rely on subjective decision data derived from expert opinions due to poor
data quality. Subjective decision data takes the form of evaluation values (Ge et al., 2020;
Sureeyatanapas et al., 2018; Wang and Cai, 2017), semantic values (Li et al., 2022b; Shakeel
et al., 2020; Su et al., 2022; Wang et al., 2023), and pairwise comparison values (Akter
et al., 2022; Liu et al., 2022a; Wang et al., 2023; Yang et al., 2020). Given the uncertainty,
ambiguity of crises, and limitations in expert experience and available information, the
subjective decision data provided by experts also carries a level of uncertainty and ambiguity.
Consequently, some studies apply grey system theory (Pamucar et al., 2020; Yang et al., 2020;
Zhang et al., 2022), fuzzy theory (Liu et al., 2023; Pamucar et al., 2022; Ge et al., 2020; Qin
and Liu, 2019), and rough set theory (Rong and Yu, 2024; Pamucar et al., 2022; Afrasiabi
et al., 2022) to enhance subjective decision data, addressing inherent uncertainties and
ambiguities. Regarding expert opinion aggregation, most studies mainly rely on algebraic
logic-based aggregation techniques, such as weighted averages and geometric means (Ataei
et al., 2020; Liu et al., 2022a; Ning et al., 2022; Pamucar et al., 2022; Zulqarnain et al.,
2021). Only a few studies explore the application of expert consensus and trust networks
in the aggregation of expert opinions in IESS (Liu et al., 2022b). Additionally, to account
for risk preferences of decision-makers arising in emergency scenarios, numerous current
studies integrate prospect theory (Zhang et al., 2023; Liu et al., 2019), cumulative prospect
theory (Liao et al., 2020), and regret theory (Liu et al., 2023) into the IESS decision-making
process. For example, in addressing the critical challenge of emergency medical supplier
selection during the COVID-19 pandemic, Liu et al. (2022a) employed a comprehensive
approach. They integrated expert semantic values transformed into interval Type-2 fuzzy
sets (IT2FSs) as inputs and incorporated an extended IT2FSs assessment method along with
an original ISM-BWM-Cosine Similarity-Max Deviation Method (IBCSMDM) to account
for psychological factors and bidirectional influence relationships. Su et al. (2022) utilized
probabilistic linguistic values provided by experts as input data and employed a TODIM
approach, augmented with prospect theory, for assessing suppliers, tackling the complexities
of MADM in the intricate and dynamic environment. Moreover, Furthermore, in addressing
the critical issue of medical supplier selection during the COVID-19 pandemic, Pamucar
et al. (2020) proposed a novel decision-making approach called Measuring Attractiveness
through a Categorical-Based Evaluation Technique (MACBETH), which incorporates fuzzy
rough numbers to effectively manage the inherent high uncertainty associated with the
selection process. Zhang et al. (2022) proposed a novel approach, the Spherical Fuzzy Grey
Relational Analysis based on Cumulative Prospect Theory (SF-CPT-GRA), which integrates
GRA with spherical fuzzy sets and incorporates decision-makers’ risk preferences for effective
emergency supplier selection.

The essence of the above MADM process lies in projecting the supplier’s performance
or utility evaluated by experts on various criteria into single comprehensive evaluation cri-
teria for supplier ranking. However, results obtained through the above approach often
lack stability and fail to accurately identify potential Pareto-optimal solutions in the IESS
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(Kacprzyk et al., 2022). The practice has shown that considering Pareto-optimal solutions
in decision analysis can effectively enhance the transparency and stability of decision-making
while also providing insights for decision portfolios (Grierson, 2008). In addition, despite
the prevailing tendency in most studies to rely on expert opinions, which are more readily
available compared to objective decision data, the evaluation values, semantic values, and
pairwise comparison values also require the support of substantial professional knowledge
and information (Afrasiabi et al., 2022). Experts need to provide specific estimates for alter-
natives, but this process can be cumbersome and time-consuming, especially when obtaining
pairwise comparison values. Moreover, the involvement of multiple stakeholders results in
significant variations in decision data. However, the current expert opinion aggregation
methods based on algebraic logic often struggle to objectively reflect experts’ actual views
and preferences in the above context (Ataei et al., 2020). Such disparities may lead to a
disconnect between decision outcomes and actual circumstances, thereby impacting the ac-
curacy and effectiveness of supplier selection. Furthermore, the existing IESS methodology,
grounded in the traditional MADM process, incorporates a range of methods involving data
standardization, expert opinion aggregation, and pre-acquisition of weight information. Un-
doubtedly, this adds complexity to the model and increases the likelihood of errors. Notably,
the dominance relationships among alternatives (i.e., ranking data) are more accessible for
experts to establish and more stable and reliable for decision-makers (Wang et al., 2021).
This superiority arises as experts only need to assess which one is better without explicitly
determining the degree of difference between alternatives. Consequently, employing ranking
data as decision data for IESS is a promising approach.

Hence, this research endeavors to present an innovative MADM approach for IESS with
uncertainty and intense time pressure. The proposed approach leverages more reliable and
easily accessible ranking data as input, eliminating the necessity for data standardization,
expert opinion aggregation, and pre-weight acquisition techniques. Additionally, it considers
preference information among expert opinions and potential Pareto optimal solutions.

3. Evaluation Criteria of IESS

This section discusses the evaluation criteria for IESS from the perspective of supplier
emergency response capability and emergency supply capacity, as outlined in Table 1.

Table 1: Evaluation criteria for IESS

Perspective Criteria

Supplier emergency response capability

Emergency response speed (C1)
Emergency delivery reliability (C2)
Emergency geographic coverage (C3)
Operation sustainability (C4)
Collaborative experience and credibility (C5)

Emergency supply capacity
Emergency suppliy availability(C6)
Emergency supply quality (C7)
Emergency supply cost-effectiveness (C8)
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3.1. Supplier Emergency Response Capability

Disasters entail instability, immediacy, and intricacy, potentially causing disruptions in
the supply chain, logistics delays, and inventory deficits. In such situations, the pivotal
factor becomes the suppliers’ emergency response capability. Broadly, emergency response
capability denotes to the suppliers’ ability to swiftly respond to and adjust their supply
chain, ensuring production and delivery capacity when faced with disasters (Pamucar et al.,
2022). Through literature analysis, this study classifies emergency response capability into
five core criteria: response speed (C1), delivery reliability (C2), geographic coverage (C3),
sustainability (C4), and collaborative experience and credibility (C5). Response speed per-
tains to the supplier’s timeliness in executing emergency response measures (Li et al., 2022a;
Zhang et al., 2022). Emergency delivery reliability encompasses the precision and depend-
ability of suppliers in delivering emergency supplies during crises (Afrasiabi et al., 2022;
Pamucar et al., 2020). A high level of reliability in emergency supplier deliveries ensures the
rapid and accurate distribution of supplies, thereby mitigating losses and impacts arising
from disasters. Emergency geographic coverage refers to the extent to which a supplier’s
emergency supplies can reach affected areas during crises (Mohamadi and Yaghoubi, 2017).
Expansive geographic coverage enhances a supplier’s ability to promptly deliver emergency
supplies and assistance to disaster-stricken regions, thereby minimizing the repercussions of
disasters. Sustainability of emergency supplier pertains to their capacity to consistently de-
liver reliable services and products amidst crises, incorporating sustainable practices across
economic, social, and environmental dimensions (Kannan et al., 2020). The collaborative
experience and credibility of emergency suppliers refers to the expertise and trustworthi-
ness demonstrated by the supplier in past collaborations when dealing with crises (Li et al.,
2022a; Pamucar et al., 2022). Emergency suppliers, drawing from their past cooperative
experiences, may be better equipped to handle unforeseen events due to the nature and
scale of challenges they may have previously encountered. Moreover, emergency suppliers
usually collaborate with multiple organizations, exhibiting excellent coordination and team-
work skills. They are familiar with the communication and collaboration processes with
all parties involved, enabling them to cooperate closely with other key stakeholders, thus
forming a unified force to respond to unexpected events.

3.2. Emergency Supply Capacity

Emergency supplies capacity primarily focuses on the inherent attributes of emergency
supplies that emergency suppliers can provide (Zhang et al., 2022). This capacity can be
broadly classified into quality, availability, and cost (Li et al., 2022a; Pamucar et al., 2022).
Supply quality encompasses the overall quality and durability, which are critical considera-
tions given the challenging environmental conditions and extensive usage during emergencies
(Afrasiabi et al., 2022). High-quality supplies ensure reliability and stability in urgent sit-
uations, while low-quality supplies may deteriorate swiftly, hindering or jeopardizing the
rescue process and adding further challenges and risks for the affected population. Supply
availability pertains to the timely provision and acquisition of supplies during disasters or
emergencies (Ge et al., 2020). Reserving an appropriate quantity of supplies ensures swift
assistance to affected areas, providing necessary support during critical moments. Supply
cost is associated with procurement and usage expenses (Liu et al., 2022a). Exorbitant
costs may limit the acquisition and reserves of supplies, impacting the scale and scope of
rescue operations. Identifying cost-effective supplies or implementing preemptive storage
and procurement measures helps alleviate cost pressures during emergency relief efforts.
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4. The Proposed Partial Ordinal Priority Approach

Partial Ordinal Priority Approach (POPA) builds upon the Ordinal Priority Approach
(OPA) proposed by Ataei et al. (2020), integrating the partial-order theory and graph theory,
thereby representing a partial-order extension of OPA. POPA can be divided into three
parts: (1) weight optimization based on ranking preference information, (2) partial-order
cumulative transformation, and (3) adversarial Hasse diagram generation. Consequently,
POPA yields results regarding the weights of experts, criteria, and alternatives, along with
an adversarial Hasse diagram that illustrates the hierarchical dominance structure among
alternatives. This section primarily concentrates on elucidating the principle of POPA.
Table 2 provides the involved indexes, parameters, sets, variables, and partial-order theory
symbols.

Table 2: Notation definition of the proposed approach

Type Notation Definition

Index
i Index of alternatives (1, . . . , i, . . . ,m)
j Index of criteria (1, . . . , j, . . . , n)
k Index of experts (1, . . . , k, . . . , p)

Parameter
rek Ranking of the experts k
rcjk Ranking of the criteria j under the preference of the expert k

raijk
Ranking of the alternative i for the criteria j under the
preference of the expert k

Set
A Set of alternatives ∀i ∈ A
C Set of criteria ∀j ∈ C
E Set of expert ∀k ∈ E

Variable
Z Objective function

W ra
ijk

Weight of the alternative i for the criteria j with the ranking of
raijk under the preference of the expert k

Partial-order
theory symbol

(A,⪯POCT ) Partial-order cumulative transformation set (POCTS)
PRPOCT POCTS in binary matrix form
A+

x,POCT Upper set of the alternative x of POCTS
A−

x,POCT Lower set of the alternative x of POCTS

A ̸=
x,POCT Incomparable set of the alternative x of POCTS

GSPOCT General skeleton matrix of POCTS

4.1. Preliminaries

Definition 1. Partial-Order Relation
Let R be a binary relation on a set X, denoted as R ⊆ X × X (R is a subset of the

Cartesian product of X). R is defined as a partial-order relation on set X, denoted as ⪯, if
it satisfies the following properties:

(1) Self-reversibility: R is self-reversible if xRx for ∀x ∈ X.
(2)Transmissibility: R is transmissible if xRy, yRz ⇒ xRz for ∀x, y, z ∈ X.
(3)Antisymmetry: R is antisymmetric if xRy, yRx ⇒ x = y for ∀x, y ∈ X.

Definition 2. Total-Order Relation

8

Electronic copy available at: https://ssrn.com/abstract=4708945



A partial-order relation R on a set X is defined as total-order relation on the set X if it
satisfies the strong completeness (i.e., xRy ∨ yRx for ∀x, y ∈ X)

The partial-order relation and total-order relation on the alternative set A originating
from the utility of the criteria set C are called partial-order set (denoted as (A,⪯C)) and
total-order set (denoted as (A,≤C)), respectively. Considering evaluations from various
experts, (A,⪯C|E) signifies the partial-order set, while the total-order set is expressed in a
similar manner. It is worth noting that partial-order relation is a more “flexible” relation
compared to total-order relation. This flexibility allows for instances where the compared
alternatives are either equivalent or not comparable.

Definition 3. Lower Set and Upper Set of Partial-Order Set
Given the partial-order set (A,⪯C), for ∀x ∈ A, A−

x,C = {y|y ⪯C x, y ∈ A} is defined as

the lower set of x on the partial-order set (A,⪯C), and A+
x,C = {y|x ⪯C y, y ∈ A} is defined

as the upper set of x on the partial-order set (A,⪯C).

Property 1. Given the partial-order set (A,⪯C), for ∀x, y ∈ A, there exists: (1) x ∈
A−

y,C ⇔ y ∈ A+
x,C; (2) x ⪯C y ⇔ A−

x,C ⊆ A−
y,C.

Definition 4. Order-Preserving Mapping of Partial-Order Set
Let (A,⪯C1) and (B,⪯C2) be the partial-order set, and function f : A → B is the

mapping. If x ⪯C1 y ⇒ f(x) ⪯C2 f(y) holds for ∀x, y,∈ A, then function f is defined as
order-preserving mapping of the partial-order set (A,⪯C1).

Definition 5. Inclusion Relation in Partial-Order Set
Let A−

x,C1
and B−

x,C2
be the lower set of x on the partial-order set (A,⪯C1) and (B,⪯C2),

respectively. If A−
x,C1

⊆ B−
x,C2

holds for ∀x ∈ A, then it is defined that the partial-order set
(A,⪯C1) is a subset of the partial-order set (B,⪯C2), denoted as (A,⪯C1) ⊆ (B,⪯C2).

Theorem 1. Suppose that the partial-order set (A,⪯C1) ⊆ (B,⪯C2) and A = B. If x ⪯C1 y
holds for ∀x, y ∈ A, then there exists x ⪯C2 y.

Proof of Theorem 1. Since ∀x, y ∈ A, then ∀x, y ∈ B. Given (A,⪯C1) ⊆ (B,⪯C2),
by Definition 5, it follows that A−

x,C1
⊆ B−

x,C2
, A−

y,C1
⊆ B−

y,C2
for x, y ∈ A. By Property 1,

x ⪯C1 y implies that x ∈ A−
y . And since A−

y,C1
⊆ B−

y,C2
, it follows that x ∈ B−

y,C2
such that

x ⪯C2 y.

Theorem 1 provides an insight that when two partial-order sets, sharing the same al-
ternatives yet differing in criteria, exhibit an inclusive relation, the evaluation outcomes
are order-preserving in the context of MADM. In addition, according to Property 1 of the
partial-order set, it can be inferred that if two alternatives are comparable, no matter how
the weights of experts and criteria change, the partial-order relation between the two alter-
natives remains unchanged. The above insight will serve as the basis for constructing the
partial-order set in POPA that incorporates the information of criteria weight.

4.2. Weight Optimization Based on Ranking Preference Information

In MADM, a pivotal concern is accurately determining the weights assigned to experts,
criteria, and alternatives while considering the experts’ preference. The weight calculation
procedure in POPA is mainly based on the original OPA model with ranking data as input.
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The proposed approach formulates a weight optimization model from partial-order theory,
facilitating the integration of expert preference information without requiring averaging and
data standardization techniques.

When employing POPA, the decision-maker initiates the process by assigning the ranking
rek to each expert. Subsequently, each expert should independently provide the ranking for
each criteria rcjk,and the ranking for each alternative under each criteria raijk. Suppose
that Ara

ijk is the alternative i with the ranking raijk of the criteria j under the evaluation
of the expert k. The above ranking provided by the experts independently can reflect the
experts’ preferences. Then, the partial-order relation among alternatives under each expert
and criteria can be presented as Eq.(1).

Ara=m
ijk ⪯C|E Ara=m−1

ijk ⪯C|E · · · ⪯C|E Ara=r+1
ijk ⪯C|E Ara=r

ijk ⪯C|E · · · ⪯C|E Ara=1
ijk ∀i, j, k (1)

Let W ra
ijk be the assigned weight or utility of the alternative i under the evaluation of the

expert k with the ranking raijk of the criteria j. There exists a corollary W ra=r+1
ijk ≤ W ra=r

ijk

such that Ara=r+1
ijk ⪯C|E Ara=r

ijk holds for ∀i, j, k (i.e., for the same criteria and expert, the
weight of alternative with the ranking raijk = r is greater than or equal to the weight of the
alternative with the ranking raijk = r + 1). Then, the following statement holds:

Ara=m
ijk ⪯C|E Ara=m−1

ijk ⪯C|E · · · ⪯C|E Ara=r+1
ijk ⪯C|E Ara=r

ijk ⪯C|E · · · ⪯C|E Ara=1
ijk ≜

W ra=m
ijk ≤ W ra=m−1

ijk ≤ · · · ≤ W ra=r+1
ijk ⪯ W ra=r

ijk ≤ · · · ≤ W ra=1
ijk ∀i, j, k

(2)

The weight disparities among the consecutive rankings of the alternatives stated in Eq.(2)
can be segregated into m autonomous inequalities, as shown in Eq.(3).

W ra=1
ijk −W ra=2

ijk ≥ 0

W ra=2
ijk −W ra=3

ijk ≥ 0

. . .

W ra=r
ijk −W ra=r+1

ijk ≥ 0

. . .

W ra=m−1
ijk −W ra=m

ijk ≥ 0

(3)

To evaluate the impact of ranking preference information of experts on the weight of the
alternatives, POPA integrates rek, rcjk, and raijk into the assessment of weight disparities
of alternatives with consecutive rankings. Thus, this study then multiplies both sides of the
inequality (Eq.(3)) by the above ranking parameter, as illustrated in Eq.(4).

rekrcjkraijk(W
ra=r
ijk −W ra=r+1

ijk ) ≥ 0 ∀i, j, k (4)

Eq.(1)-Eq.(4) present a logic for analyzing the weight or utility disparities of alterna-
tives with consecutive rankings assigned by experts with preference information. This above
process can also be extended to analyze the weight disparities of experts and criteria. It is
notable that decision-makers are willing to seek decision weight computations that mirror
the expert’s preferences and exhibit maximum discrimination. Thus, this study formulates
a multi-objective optimization model for decision weight optimization based on the rank-
ing preference information, as shown in Eq.(5). The optimization objectives encompass
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maximizing the weights of last-ranked alternatives and the weight discrepancies between
alternatives with consecutive rankings.

max{rekrcjkraijk(W ra=r
ijk −W ra=r+1

ijk ), rekrcjkraijkW
ra=m
ijk } ∀i, j, k

s.t.
m∑
i=1

n∑
j=1

p∑
k=1

W ra
ijk = 1

W ra
ijk ≥ 0

(5)

Where the variable W ra
ijk is the decision variable of the optimization model and other

parameters are consistent with the definition specified in Table 2.
Then, maximum the minimization of the objective function:

maxmin{rekrcjkraijk(W ra=r
ijk −W ra=r+1

ijk ), rekrcjkraijkW
ra=m
ijk } ∀i, j, k

s.t.
m∑
i=1

n∑
j=1

p∑
k=1

W ra
ijk = 1

W ra
ijk ≥ 0

(6)

The optimization model in max-min form can be further transformed into a linear pro-
gramming problem by variable substitution:

Z = min{rekrcjkraijk(W ra=r
ijk −W ra=r+1

ijk ), rekrcjkraijkW
ra=m
ijk } ∀i, j, k (7)

Substituting Eq.(7) into Eq.(6) yields a linear optimization model for MADM weights
based on ranking preferences, as shown in Proposition 1.

Proposition 1. Decision Weight Optimization Model Based on Ranking Preference Infor-
mation

Given the ranking of experts rek, the ranking of criteria rcjk and alternatives under each
criteria raijk independently given by the experts, the decision weight optimization model
based on ranking preference information of experts is formulated as Eq.(8).

maxZ

s.t.

Z ≤ rekrcjkraijk(W
ra=r
ijk −W ra=r+1

ijk ) ∀i, j, k
Z ≤ rekrcjkraijkW

ra=m
ijk ∀i, j, k

m∑
i=1

n∑
j=1

p∑
k=1

W ra
ijk = 1

W ra
ijk ≥ 0

(8)

By resolving Eq.(8), the weight of the alternative i with the ranking raijk of the criteria j
under the evaluation of the expert k can be determined. To ensure the active participation of
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experts in the decision-making process, it is recommended to set a lower bound of W ra
ijk ≥ η,

where η = 1
8×m×n×p

.

Eq.(9) provides the formulations for computing the weight of experts, criteria, and al-
ternatives.

WA
i =

n∑
j=1

p∑
k=1

W ra
ijk ∀i

WC
j =

m∑
i=1

p∑
k=1

W ra
ijk ∀j

WE
k =

m∑
i=1

n∑
j=1

W ra
ijk ∀k

(9)

Through the above derivation, this study obtains an optimization model for determin-
ing decision weights while considering experts’ ranking preference information. Nevertheless,
the computed alternative weights merely project numerous criteria onto a single comprehen-
sive criteria (Yue and Yao, 2023). Consequently, the outcomes lack stability in addressing
situations involving Pareto optimal solutions within the alternatives, which is the common
problem with the most MADM methods (Cao et al., 2023). To address this limitation,
the outcomes of weight optimization based on ranking preference information will undergo a
partial-order cumulative transformation in POPA, which incorporates information of criteria
weight.

4.3. Partial-Order Cumulative Transformation

The partial-order cumulative transformation of alternative weights in POPA primarily
aims to construct a partial-order set incorporating the information of criteria weight, which
is more flexible than the partial-order set originating from the strict Pareto optimality
condition over each criteria, and more robust than the total-order set based on the single
projected comprehensive criteria computed by decision weight optimization model. The
core of this process lies in ensuring the newly constructed partial-order set has the property
of order-preserving. The first step is to compute alternative weights under the criteria, as
depicted in Eq.(10).

WAC
ij =

p∑
k=1

W ra
ijk ∀i, j (10)

Denote (A,≤SPCC) as the total-order set originating from WA (i.e., single projected
comprehensive criteria), and (A,⪯AC) as the partial-order set based on WAC originating
from the strict Pareto optimality condition. Given the strict Pareto optimality-based partial-
order relation of alternatives, it refers explicitly to the partial-order relation formed by
directly examining the unprocessed weights of alternatives on various criteria.

Definition 6. Partial-Order Cumulative Transformation Set
Suppose that the criteria in WAC are arranged in descending ranking of the calculated

criteria weight. The partial-order cumulative transformation weight can be calculated by
Eq.(11). Then, (A,⪯POCT ) is defined as the partial-order cumulative transformation set
(POCTS) of (A,⪯AC).

W POCT
ij =

l∑
j=1

WAC
ij l ∈ [n], and ∀i, j (11)
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The partial-order cumulative transformation weight can be expressed as Eq.(12) in matrix
form, where H is the upper triangular matrix. The above procedure represents a linear
mapping of cumulative transformations applied to WAC , incorporating weight information.

W POCT = WACH =


WAC

11 WAC
11 +WAC

12 · · · WAC
11 +WAC

12 + · · ·+WAC
1n

WAC
21 WAC

21 +WAC
22 · · · WAC

21 +WAC
22 + · · ·+WAC

2n
...

...
. . .

...
WAC

m1 WAC
m1 +WAC

m2 · · · WAC
m1 +WAC

m2 + · · ·+WAC
mn

 (12)

Comparing the magnitudes of the row vectors of W POCT yields the POCTS in binary
matrix form among the alternatives PRPOCT = [prPOCT

xy ]m×m. Where prPOCT
xy can be deter-

mined by Eq.(13).

prPOCT
xy =

{
1, if W POCT

xj ≥ W POCT
yj , ∀j

0, otherwise
∀x, y ∈ A (13)

Subsequently, the order-preserving property of the POCTS is verified by Theorem 2 and
Theorem 3.

Theorem 2. Suppose that (A,⪯POCT ) is the partial-order cumulative transformation set of
(A,⪯AC), then it follows that (A,⪯AC) ⊆ (A,⪯POCT ).

Proof of Theorem 2. Let A−
x,AC = {t|t ⪯AC x, t ∈ A} and A−

x,POCT = {t|t ⪯POCT x, t ∈
A} denote the lower set of x ∈ A on (A,⪯AC) and (A,⪯POCT ), respectively. For ∀t ∈ A−

x,AC ,

there exists t ⪯AC x ⇔ WAC
tj ≤ WAC

xj ,∀j. It follows that
∑l

j=1W
AC
tj ≤

∑l
j=1 W

AC
xj , l ∈ [n],

such that t ∈ A−
x,POCT , which implies that A−

x,AC ⊆ A−
x,POCT . By Definition 5, (A,⪯AC) ⊆

(A,⪯POCT ) holds.

Theorem 3. Suppose that (A,⪯POCT ) is the partial-order cumulative transformation set of
(A,⪯AC). For ∀x, y ∈ A, when x ⪯C y exists, W POCT

xj ≤ W POCT
yj holds.

Proof of Theorem 3. Prove by mathematical induction. Consider WAC , and its ele-
ments WAC

ij can be decomposed into WC
j · V AC

ij , where WC
j signifies the criteria weight

computed in POPA, and V AC
ij can be interpreted as an unweighted utility with respect to

the criteria j. Given x ⪯C y, it follows that WAC
xj ≤ WAC

yj ⇔ V AC
xj ≤ V AC

yj such that

(WAC
y1 −WAC

x1 ) + (WAC
y2 −WAC

x2 ) + · · ·+ (WAC
yn −WAC

xn ) ≥ 0 ⇔
WC

1 (V AC
y1 − V AC

x1 ) +WC
2 (V AC

y2 − V AC
x2 ) + · · ·+WC

n (V AC
yn − V AC

xn ) ≥ 0
(14)

When r = 2, there exists WC
1 ≥ WC

2 and V AC
y1 ≥ V AC

x1 such that

WC
1 (V AC

y1 − V AC
x1 ) ≥ WC

2 (V AC
y1 − V AC

x1 ) (15)

It follows that
WC

1 (V AC
y1 − V AC

x1 ) +WC
2 (V AC

y2 − V AC
x2 ) ≥

WC
2 (V AC

y1 − V AC
x1 ) +WC

2 (V AC
y2 − V AC

x2 ) =

WC
2 (V AC

y1 − V AC
x1 + V AC

y2 − V AC
x2 ) ≥ 0

(16)
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When r = l, there exists {WC
l−1 ≥ WC

l ,∀j ∈ l} and {V AC
yj ≥ V AC

xj ,∀j ∈ l} such that

WC
1 (V AC

y1 − V AC
x1 ) + · · ·+WC

l (V AC
yl − V AC

xl ) ≥
WC

l (V AC
y1 − V AC

x1 + · · ·+ V AC
yl − V AC

xl ) ≥ 0
(17)

Thus, when r = n, there exists:

WC
1 (V AC

y1 − V AC
x1 ) + · · ·+WC

n (V AC
yn − V AC

xn ) ≥
WC

n (V AC
y1 − V AC

x1 + · · ·+ V AC
yn − V AC

xn )
(18)

By the given premise WC
1 (V AC

y1 −V AC
x1 )+WC

2 (V AC
y2 −V AC

x2 )+ · · ·+WC
n (V AC

yn −V AC
xn ) ≥ 0,

it follows that
WC

1 (V AC
y1 − V AC

x1 ) + · · ·+WC
n (V AC

yn − V AC
xn ) ≥

WC
n (V AC

y1 − V AC
x1 + · · ·+ V AC

yn − V AC
xn ) ≥ 0

(19)

Thus, W POCT
xj ≤ W POCT

yj holds.

Theorem 2 and Theorem 3 prove the order-preserving property of the newly constructed
POCTS incorporating information of criteria weight. It is noteworthy that the last column
element in W POCT equals to the WA computed by decision weight optimization model.
Then, by Definition 2 of total-order relation, it follows that (A,⪯AC) ⊆ (A,⪯POCT ) ⊆
(A,≤SPCC). It is further demonstrated by theoretical derivation that the relationship be-
tween the constructed POCTS and the original partial-order set based on the strict Pareto
optimality condition over each criteria and the total-order set based on the single projected
comprehensive criteria. This implies that, theoretically, the partial-order set constructed
based on the partial-order cumulative transformation (A,⪯POCT ) makes a trade-off between
the total-order relation based on comprehensive evaluation weights and the partial-order
relation based on the strict Pareto optimality condition, thereby forming a more robust
partial-order relation. While the partial-order relation of the strict Pareto optimality condi-
tion (A,⪯AC) emphasizes the strict dominance relation between alternatives on each criteria,
whereas the total-order relation (A,≤SPCC) is of a stronger property in which each pair of
alternatives is comparable. From the perspective of MADM practice, the POCTS signifies
that if alternatives face a disadvantage in a relatively important criteria, they may still
be deemed viable as long as succeeding criteria can compensate for the deficiency in that
specific criteria. This ensures a more stable and dependable outcome for managers when
selecting optimal alternatives.

However, based on the transmissibility of the partial-order relation, it is evident that
redundant information exists in the generated POCTS binary matrix. It means that the
redundant dominance relations can be streamlined according to the transmissibility of the
partial-order relations to generate a more concise dominance structure among alternatives.
This structure will provide visual support to decision-makers for optimal alternative selec-
tion.

4.4. Adversarial Hasse Diagram Generation

In order to streamline the reduction information in the parital-order relation, this study
proposes the adversarial Hasse diagram of POPA, drawing inspiration from the Hasse dia-
gram (Wu et al., 2021) and the adversarial interpretative structural modeling (AISM) (Su
et al., 2023). Compared to the conventional Hasse diagram, the adversarial Hasse diagram
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not only identifies the most simplified dominance relations but also extracts hierarchical
dominance structures of alternatives based on the non-dominant ascending and descending
rules. These dual-direction extraction rules empower decision-makers with a more compre-
hensive perspective for decision-making. Notably, the dominance structure of alternatives
offers intuitive insights into Pareto-optimal alternatives, and clustering hierarchy informa-
tion of alternatives.

Proposition 2. Dominant Hierarchy Extraction of Partial-Order Cumulative Transforma-
tion Set in Binary Matrix Form

By Definition 3, the lower set, upper set, and incomparable set of x ∈ A of the POCTS
in binary matrix form can be determined by Eq.(20).

A−
x,POCT = {y|prPOCT

xy = 1, y ∈ A}
A+

x,POCT = {y|prPOCT
yx = 1, y ∈ A}

A̸=
x,POCT = A− A−

x,POCT − A+
x,POCT

(20)

Regarding dominant hierarchy extraction based on non-dominant ascending rules, if the
condition (A−

x,POCT ∪{x})∩ (A+
x,POCT ∪{x}) = (A−

x,POCT ∪{x}), x ∈ A is satisfied for y ∈ A,

then position y at the top layer. Subsequently, eliminate the rows and columns in PRPOCT

corresponding to y. Iterate this process, positioning y ∈ A from the highest to the lowest
layer, until all elements in PRPOCT are eliminated.

Regarding dominant hierarchy extraction based on non-dominant descending rules, if the
condition (A−

x,POCT ∪ {x}) ∩ (A+
x,POCT ∪ {x}) = (A+

x,POCT ∪ {x}), x ∈ A is satisfied for
y ∈ A, then position y at the bottom layer. Subsequently, eliminate the rows and columns in
PRPOCT corresponding to y. Iterate this process, positioning y ∈ A from the lowest to the
highest layer, until all elements in PRPOCT are eliminated.

Following Proposition 2, the dominant hierarchy is extracted, and then PRPOCT is sub-
jected to edge contraction to eliminate redundant dominance relation information. Following
Eq.(21) for edge contraction, the general skeleton matrix (GS) is determined.

GSPOCT = (PRPOCT + I)′ − ((PRPOCT )′)2 − I (21)

Where, I is unit matrix, and all operators involved are Boolean operations.
Ultimately, the adversarial Hasse diagram can be derived by substituting the general

skeleton matrix into the extracted dominant hierarchy, with its property presented as follows.

Property 2. Given the adversarial Hasse diagram of the partial-order cumulative transfor-
mation set (A,⪯POCT ), the following holds:

(1) The top-layer alternatives, identified through non-dominant ascending and descending
rules, represent Pareto optimal alternatives.

(2) The count of dominant hierarchies, determined by non-dominant ascending and de-
scending rules, is uniform, with at least one consistent alternative for each layer.

(3) The dominance relation within the general skeleton matrix maintains transitivity.
(4) The alternatives within the same layer is incomparable.

Through the above derivation, this study formulates POPA and clarifies the motivations
and underlying logic behind each part. In general, POPA utilizes more stable and easily ob-
tainable ranking data that mirrors expert preference information, serving as inputs for the
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model. The decision weight optimization model based on ranking preference information
is initially derived to determine the weights of experts, criteria, and alternatives. POPA
then proposes a partial-order cumulative transformation to handle the inability to address
potential Pareto optimal problems in ranking the alternatives through single projected com-
prehensive criteria, thus constructing a more robust partial-order relation. Ultimately, by
generating the adversarial Hasse diagram, POPA streamlines redundant information within
the dominance structure, concurrently presenting Pareto optimal alternatives and the sim-
plified dominance structure with clustering hierarchy information of alternatives. These
sequential steps aim to ensure the effectiveness and reliability of the model while addressing
potential Pareto optimality scenarios, thereby enhancing the practical guidance and decision
support effectiveness of the final decision outcomes.

The steps for implementing POPA are outlined as follows:
Step 1: Determining the experts, criteria, and alternatives.
Step 2: Ranking the experts and acquiring the ranking of criteria and alternatives under

each criteria independently provided by each expert.
Step 3: Computing the weight of experts, criteria, and alternatives based on the ranking

preference information as expressed in Eq.(8) and Eq.(9).
Step 4: Performing the partial-order cumulative transformation and determining the

POCTS in binary matrix form in accordance with Eq.(10), Eq.(11), and Eq.(12).
Step 5: Generating the adversarial Hasse diagram following the process of dominant

hierarchy extraction and edge contraction as expressed in Proposition 2 and Eq.(21).

5. Case study and Discussion

5.1. Case Description and Data Collection

This study utilizes the IESS associated with the 7.20 mega-rainstorm disaster in Zhengzhou,
China, as a case study to illustrate and validate the proposed POPA. The unprecedented
intensity and geographic extent of the torrential rain in Zhengzhou shattered historical prece-
dents, surpassing established flood control and drainage capacities, resulting in widespread
waterlogging and inundation (Peng and Zhang, 2022). The exigency of the situation neces-
sitates a substantial influx of medical supplies, sustenance, essential provisions, and other
relief materials-outstripping the provisioning capacity of the pre-identified suppliers during
the disaster preparedness phase. Confronted with this overwhelming catastrophe, it is neces-
sary to carry out IESS to ensure the seamless advancement of rescue protocols. Considering
the tight time constraints, highly uncertain information, and the involvement of multiple
stakeholders, the scenario of IESS for the Zhengzhou mega-rainstorm disaster emerges as a
representative application scenario for POPA.

Fifteen emergency suppliers, designated as A1 to A15, are at the disposal for selection
within the stricken region. These suppliers encompass a spectrum of characteristics, includ-
ing location, responsiveness, and supply capacity, each exhibiting distinct variations. Certain
entities prioritize a stable supply chain and swift responsiveness, albeit at a cost premium
beyond the norm. Conversely, other entities boast advantageous geographical placement
and efficient traffic connectivity, expediting the provision of flood relief in times of crisis.
However, these advantages might be counterbalanced by uncertainties surrounding the qual-
ity and durability of the provided rescue materials. These distinguishing characteristics will
serve as benchmarks aiding experts in ranking alternatives. Following this, five decision-
makers from various departments act as representatives for stakeholders in the selection of
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emergency suppliers. This group includes representatives from the Zhengzhou Emergency
Management Department, the Zhengzhou Civil Affairs Department, and the Zhengzhou Mu-
nicipal Health Commission. The experts have been prioritized based on their authority in
emergency response decision-making, with E5 having the highest rank, followed by E2, E1,
E3, and E4 in descending order (E5 >E2 >E1 >E3 >E4). These decision-makers evaluate
the essential requirements for specifying emergency suppliers and provide rankings for both
sub-criteria and suppliers, as detailed in Table A.1.

5.2. Emergency Supplier Selection Results and Analysis

Figure 2 displays the weights of emergency suppliers, sub-criteria with the computed
weight presented in Table B.1. Regarding the expert weight outcomes, Expert E5, possess-
ing the utmost authority, is assigned 0.4380, followed by Expert E2 with 0.2190. Subse-
quently, Experts E1, E3, and E4 trail behind with weights of 0.1460, 0.1095, and 0.0876,
respectively. Notably, the results of expert weights reveal a distinct trend of diminishing
marginal effects. In the context of criteria, the most critical factor is the supplier response
speed (C1), carrying a weight of 0.2444. Closely followings are supplier collaborative experi-
ence and credibility(C5), supplier delivery reliability (C2), and supplier geographic coverage
(C3), with weights of 0.2007, 0.1481, and 0.1329, respectively. Conversely, the weighs for
the supply availability (C6), the supply quality (C7), the supply cost-effectiveness (C8),
and supplier sustainability (C4) are relatively lower, with weights of 0.0931, 0.0694, 0.0602,
and 0.0512, respectively. From the criteria weight results of the case study, it is evident
that during the improvisational selection of emergency suppliers by critical stakeholders,
the primary focus lies on the emergency response capability of suppliers rather than the
attributes of the supplies they can provide. Notably, despite the increasing emphasis on the
sustainability of humanitarian operations in alignment with UN Sustainable Development
Goals, stakeholders in the case study still regard the sustainability of emergency suppliers
as a relatively insignificant criteria. Based on the computed weights of alternatives, the top
five alternatives are ranked as follows: A8, A3, A7, A5, and A13. Specifically, A8 exhibits
the most significant weight, reaching 0.1021, followed by A3, with a weight of 0.0907. In
contrast, the weights for A7 and A5 are similar, standing at 0.0829 and 0.0803, respectively.
The weight for A13 is 0.072.

However, based on the discussion in the literature review and methodology, the above
ranking of alternatives is derived by projecting the evaluation criteria of IESS onto a com-
prehensive criteria. This outcome raises concerns regarding the stability of decision-making,
posing challenges in identifying potential Pareto optimal scenarios. Therefore, for a more
comprehensive decision-making insight into the Pareto optimal alternatives and the domi-
nant structure among alternatives, it is imperative to undertake further partial-order cumu-
lative transformation, especially within the context of IESS. Table 3 presents the result of
partial-order cumulative transformation.

Through dominant hierarchy extraction and edge contraction operations, the partial-
order cumulative transformation set in binary matrix form is streamlined to eliminate re-
dundant information and further generate the adversarial Hasse diagram of emregency sup-
pliers, as depicted in Figure 3. The adversarial Hasse diagram distinctly illustrates the IESS
information regarding the dominance structure, Pareto-optimal alternatives, and hierarchi-
cal clustering details. The dashed blocks within the adversarial Hasse diagram denote the
alternatives with altered hierarchy.
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Figure 2: Computed weights of experts, sub-criteria and suppliers of the case IESS

As exemplified in Table 4, the dominant hierarchy of the case IESS unfolds over five
layers, elucidating the alternatives with unchanged hierarchy and altered hierarchy inherent
within each layer. The structure originating from non-dominant descending rules positions
A3 at Layer 1, succeeded by A5 and A8 at Layer 2, and A2, A10, A11, A1, and A13 at
Layer 3. Layer 4 encompasses A4, A6, A12, and A14, while Layer 5, the bottom layer,
contains A9, A15, and A7. Within the adversarial Hasse diagram based on non-dominant
descending rules, the Pareto optimal alternatives for the case IESS emerges as A3, which
excels in pivotal dimensions of supplier response speed (C1) and consistently performs ex-
ceptionally across other criteria, encompassing supplier delivery reliability (C2) and supply
quality (C7). A proximate alternative of note lies in Layer 2, represented by A5 and A8.
Notably, under the transitive conditions of the adversarial Haase diagram, A5 serves as a
sub-optimal alternative for A3. Regarding structure based on non-dominant ascending rules,
the dominance hierarchy of A8 has transitioned from Layer 2 to Layer 1, whereas A7 now
occupies Layer 2 rather than Layer 5. This reconfiguration positions A8 and A3 in Layer
1, each with inherent merits and limitations. A comparison between A8 and A3 reveals
that, in terms of the supplier collaborative experience and credibility(C5) and the supply
cost-effectiveness (C8), A8 takes precedence. Furthermore, A5 and A7 are sub-optimal alter-
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Table 3: The results of partial-order cumulative transformation of the case IESS

W POCT
ij1

W POCT
ij2

W POCT
ij3

W POCT
ij4

W POCT
ij5

W POCT
ij6

W POCT
ij7

W POCT
ij8

A1 0.0211 0.0301 0.0407 0.0454 0.0531 0.0563 0.0607 0.0653
A2 0.0119 0.0290 0.0351 0.0496 0.0521 0.0556 0.0608 0.0627
A3 0.0342 0.0435 0.0624 0.0722 0.0785 0.0860 0.0887 0.0907
A4 0.0142 0.0173 0.0241 0.0341 0.0418 0.0461 0.0490 0.0555
A5 0.0292 0.0409 0.0539 0.0613 0.0684 0.0735 0.0763 0.0803
A6 0.0121 0.0154 0.0249 0.0330 0.0462 0.0518 0.0538 0.0559
A7 0.0063 0.0337 0.0554 0.0645 0.0721 0.0770 0.0790 0.0829
A8 0.0267 0.0678 0.0719 0.0770 0.0832 0.0862 0.0954 0.1021
A9 0.0080 0.0161 0.0272 0.0363 0.0422 0.0487 0.0516 0.0530
A10 0.0177 0.0318 0.0362 0.0474 0.0509 0.0545 0.0584 0.0597
A11 0.0161 0.0221 0.0302 0.0438 0.0541 0.0602 0.0658 0.0696
A12 0.0112 0.0247 0.0350 0.0449 0.0473 0.0523 0.0560 0.0605
A13 0.0114 0.0338 0.0446 0.0553 0.0620 0.0672 0.0694 0.0720
A14 0.0133 0.0244 0.0321 0.0382 0.0417 0.0444 0.0478 0.0512
A15 0.0111 0.0144 0.0195 0.0230 0.0256 0.0289 0.0358 0.0385

Table 4: Hierarchical clustering information of the case IESS

Alternatives with
unchanged hierarchy

Alternatives with altered
hierarchy (ascending rules)

Alternatives with altered
hierarchy (descending rules)

Layer 1 A3 — A8
Layer 2 A5 A8 A7
Layer 3 A1, A2, A10, A11, A13 — —
Layer 4 A4, A6, A12, A14 — —
Layer 5 A9, A15 A7 —

natives to A3 and A8. Comparing A5 with A7, the latter excels in the supplier collaborative
experience and credibility(C5), supplier delivery reliability (C2), and supplier geographic
coverage (C3). Leveraging their respective strengths, A7 demonstrates suitability for large-
scale disaster scenarios that require a stable resource supply, whereas A1 is better suited to
resource supply scenarios with extreme time pressures.

Therefore, the IESS is not solely determined by the highest weights of alternatives.
Projecting multiple criteria onto a comprehensive criteria for the IESS may result in losing
valuable decision insights. Instead, this decision-making process necessitates considering
the specific capability advantages of each emergency supplier and tailoring the selection to
different scenarios. As illustrated by the case study, POPA can provide information on the
alternative dominance structure, Pareto-optimal and sub-optimal alternatives, which will aid
decision-makers in formulating more transparent and robust decisions. While, this type of
information is not possible in some of MADM methods like TOPSIS, VIKOR, and TODIM.
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Figure 3: Adversarial Hasse diagram of the case IESS

5.3. Discussion

5.3.1. Validation of POPA Results Based on Sensitivity Analysis

Performing sensitivity analysis on input data or parameters is a vital numerical analysis
technique to evaluate the efficacy of MADM methods. The core of POPA involves ranking
data with expert preferences, where the rankings of criteria and alternatives under criteria,
independently provided by experts, can aptly reflect expert preference information. Ana-
lyzing the sensitivity of rankings provided by experts involves perturbing their preference
information, thus creating numerous new expert scenarios. Nevertheless, this method lacks
a distinct benchmark, impeding thorough analysis. Therefore, this paper conducts a sensi-
tivity analysis on expert rankings supplied by decision-makers to ensure logical coherence.
Specifically, this study conducts a complete permutation of rankings for five experts with 120
experiments. The weights assigned to experts, criteria, and alternatives computed by POPA
are aggregated. Concurrently, the frequency of instances where each alternative emerges as
the Pareto optimal solution is examined within the adversarial Hasse diagram. Figure 4 and
Table 5 depict box plots and descriptive statistics of the computed weight outcomes.

In the descriptive statistical analysis of expert weights, the average values obtained
by the five experts all demonstrate a consistent feature, standing at 0.2. Expert weights’
maximum and minimum values are 0.4380 and 0.0876, respectively. This consistency is
also evident across all other indicators. This outcome aligns with intuitive observations
from implementing a whole permutation experimental design. Each expert’s frequency of
occurrence at various ranking positions is equal, resulting in the uniformity of descriptive
statistical results among the experts. Regarding the mean values of criterion weights, the
most significant is C1, with a weight of 0.2821, followed by C3, with a weight of 0.1717.
Subsequently, C5, C2, and C6 closely follow, with weights of 0.1295, 0.1214, and 0.1134,
respectively, exhibiting a relatively similar trend. In contrast, the weights of C8 and C4
are the lowest, at 0.0541 and 0.0517, respectively. The Skewness results of the criteria
indicate that, except for C1 exhibiting left Skewness, the remaining criteria demonstrate
right Skewness. Meanwhile, the Kurtosis results for the criteria reveal that all criteria
exhibit negative Kurtosis, implying that the criteria weights concentrate around the mean,
with relatively fewer data points in the tails. Notably, the coefficients of variation for both
C3 and C5 surpass the designated threshold (0.15), while the coefficients for other criteria
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Figure 4: Box plots of the computed weight outcomes

remain below the threshold. Specifically, the coefficient of variation for C5 reaches 0.2956,
indicating a pronounced dispersion trend. Furthermore, an examination of Figure 4 reveals
a distinct portion of C5 weights reaching 0.2033. This is primarily due to the ranking of C5
provided by expert E5, which is 1, contrasting with rankings of 4, 6, 5, and 7 from other
experts. The divergent nature of these evaluations results in abnormal fluctuations in the
weight of C5. Upon analyzing the mean weights of alternatives, it is evident that the top four
ranked alternatives are A5, A8, A3, and A11, with weights of 0.0881, 0.0868, 0.0841, and
0.0806, respectively. Notably, the maximum weight among the alternatives is associated with
A8, reaching 0.1039, while A8 exhibits a relatively high degree of dispersion. Additionally,
the coefficients of variation for the weights of the alternatives do not exceed the threshold
(0.15). Furthermore, both the standard deviation and variance are smaller than that of the
criteria, indicating a more excellent stability of the alternatives compared to the criteria.
Furthermore, it is observed that A1, A2, A5, A7, A8, A10, A11, A12, and A13 all display
a negative skewness, indicating a right-skewed distribution. This implies that the weight
distribution of alternatives with negative Skewness extends more gradually to the right,
with the possibility of some relatively large values concentrated overall around the mean.
In contrast, the remaining alternatives exhibit characteristics of a left-skewed distribution
in their negative Skewness. Through statistical analysis of criteria and alternative weights,
it can be deduced that the weight outcomes of POPA are reasonably stable.
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Table 6 provides a detailed depiction of the frequencies at which various alternatives
emerge as Pareto-optima solutions. It is evident from the observations that A3, A5, A8,
A11, and A1 consistently stand out with frequencies exceeding 10 in multiple experiments.
Notably, A3, A5, and A8 frequently manifest as Pareto-optimal solutions in experiments ex-
ceeding 50 instances. The disclosed information indicates that, under specific circumstances,
the above alternatives all have the potential to become Pareto optimal solutions. This find-
ing contrasts significantly with the weight-based total-order ranking results, focusing solely
on the alternative with the highest weight. Such differences suggest the importance of con-
sidering the potential superiority of alternatives in different contexts during decision-making
rather than relying solely on their relative positions in a total-order based on weights. How-
ever, the weight-based total-order ranking results exhibit a certain degree of alignment with
the alternatives expected to be Pareto optimal. This demonstrates the reliability and ratio-
nality of the adversarial Hasse diagram based on partial-order cumulative transformation in
identifying Pareto optimality.

Table 6: Frequency of attaining Pareto optimal solutions in adversarial Hasse diagram

Frequency in non-dominant
ascending structure

Frequency in non-dominant
descending structure

Discrepancy

A1 13 9 4
A2 0 0 0
A3 99 81 18
A4 0 0 0
A5 82 79 3
A6 0 0 0
A7 0 0 0
A8 51 24 27
A9 0 0 0
A10 3 2 1
A11 33 1 32
A12 0 0 0
A13 6 0 6
A14 6 0 6
A15 0 0 0

5.3.2. Validation of POPA results Based on Comparative Analysis

This study undertakes a comparative analysis within the IESS context of the Zhengzhou
mega-rainstorm disaster to validate POPA. Specifically, it contrasts the alternative ranking
outcomes of POPA with those derived from conventional MADM methods, encompassing
TOPSIS, VIKOR, TODIM, and RSR. Typically, the above MADMmethods employ decision
matrices with objective values or evaluation scores, necessitating the prior acquisition of
criterion weights. Consequently, aligning the ranking outcomes of MADM methods based
on the decision matrix with those of POPA facilitates a more efficient demonstration of the
merits and validity of POPA. It is worth noting that ELECTRE is not selected due to the
additional requirement of setting subjective threshold parameters during its implementation.
Regarding the input of the selected MADMmethods, the criteria weights produced by POPA
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are employed for the criteria weight input, with the data presented in Table B.1 serving as
the decision matrix. The computed alternative ranking results are shown in Table 7.

Table 7: Alternative ranking results of multiple MADM methods

POPA weight
ranking

POPA average
dominant hierarchy

TOPSIS VIKOR TODIM RSR

7 3 8 7 6 11
8 3 7 8 8 8
2 1 1 1 2 10
12 4 10 10 11 12
4 2 3 3 3 2
11 4 9 11 10 14
3 3.5 4 4 13 4
1 1.5 2 2 1 1
13 5 13 13 14 9
10 3 11 12 4 7
6 3 5 5 5 6
9 4 12 9 9 5
5 3 6 6 7 3
14 4 14 14 12 13
15 5 15 15 15 15

This paper employs the Spearman correlation coefficient to assess the correlation among
the ordinal sequences of alternative ranking results, as shown in Eq.(22).

ρ = 1− 6
∑n

i=1 d
2
i

n(n2 − 1)
(22)

Where n is the number of alternative and d2i is the difference squared between two
rankings. As ρ approaches 1, it indicates a pronounced positive correlation between the
two rankings; whereas when the ρ approaches -1, it signifies a significant inverse correlation
between the two rankings. When ρ approaches 0, it suggests a lack of evident correlation
between the two rankings. Table 8 shows the Spearman correlation coefficients of alternative
rankings of multiple MADM methods.

The results show that the alternative ranking derived from POPA weights displays a
noteworthy positive association with TOPSIS and RSR rankings, with Spearman correla-
tion coefficients of 0.9536 and 0.9750, respectively. In contrast, a moderate correlation is
observed with VIKOR and TODIM rankings, featuring corresponding Spearman correlation
coefficients of 0.7321 and 0.7500, respectively. The dominant hierarchy of POPA reveals a
notable Spearman correlation coefficient of 0.9315 with VIKOR, significantly surpassing cor-
relations with VIKOR from other methods. Furthermore, the dominant hierarchy of POPA
shows a robust correlation with TOPSIS and RSR, with corresponding Spearman correlation
coefficients of 0.8654 and 0.8452. However, the correlation with TODIM is comparatively
lower, at only 0.5806. Notably, the correlation levels of all other methods with TODIM rank-
ings are generally low, ranging between [0.5429, 0.6786]. In summary, the ranking outcomes
derived from POPA reveal substantial correlations with other methods, except for some
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Table 8: Spearman correlation coefficients of alternative ranking results of multiple MADM methods

POPA weight
ranking

POPA average
dominant hierarchy

TOPSIS VIKOR TODIM RSR

POPA weight
ranking

1.0000 0.8599 0.9536 0.7321 0.7500 0.9750

POPA average
dominant hierarchy

0.8599 1.0000 0.8654 0.9315 0.5806 0.8452

TOPSIS 0.9536 0.8654 1.0000 0.7250 0.6179 0.9714
VIKOR 0.7321 0.9315 0.7250 1.0000 0.5429 0.7214
TODIM 0.7500 0.5806 0.6179 0.5429 1.0000 0.6786
RSR 0.9750 0.8452 0.9714 0.7214 0.6786 1.0000

variations with TODIM. Based on the presented findings, POPA demonstrates reasonable
performance compared to other traditional MADM methods, relying on ordinal data that is
easily accessible and without the need for prior acquisition of additional weight information.

5.3.3. Advantage Analysis of POPA over Other MADM Methods

Currently, classical MADM methods can be broadly categorized into three main groups:
(1) weighting methods, exemplified by entropy-related methods; (2) ranking methods, in-
cluding TOPSIS, VIKOR, ELECTRE, PROMETHEE, and Hasse diagram; and (3) compre-
hensive methods, such as AHP, BWM, and OPA. Table 9 presents a comparative analysis
between POPA and various other MADM methods across different decision-making char-
acteristics. The table reveals that POPA transforms MADM issues into a mathematical
optimization model capable of concurrently determining weights for experts, criteria, and
alternatives while identifying Pareto optimal solutions. Furthermore, POPA employs rank-
ing data as model inputs, eliminating the need for pairwise comparison data and decision
matrix, where obtaining pairwise comparison data and decision matrix has been proven
challenging and time-consuming. Additionally, there is no requirement for standardizing
decision data or aggregating expert opinions in POPA.
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6. Conclusion

In the contemporary high-risk society, frequent extreme climate disasters, terrorist at-
tacks, and major infectious diseases introduce notable abruptness and uncertainty, present-
ing substantial threats to human welfare, economic stability, and the security of individuals’
lives and assets. In such scenarios, the rapid surge in demand for emergency supplies often
exceeds the existing supply from emergency suppliers. Decision-makers must judiciously and
promptly navigate this uncertain environment to make improvisational selections of suitable
emergency suppliers. Presently, the MADM within IESS frequently encounters a series of
formidable challenges, manifested as follows: (1) insufficient, imprecise, and time-consuming
acquisition of decision data; (2) the necessity to coordinate and integrate decision opinions
and preferences from multiple stakeholders; (3) the identification of potential Pareto optimal
solutions during the decision-making process.

Therefore, this study presents POPA for addressing the challenges that IESS encounters.
Specifically, POPA builds upon the OPA with the more accessible and reliable rankings of
experts, criteria, and alternatives as the model inputs. The study develops a decision weight
optimization model capable of simultaneously obtaining the weights of experts, criteria,
and alternatives, considering expert ranking preferences. To enhance decision stability and
effectively identify potential Pareto optimal solutions, this study derives the partial-order
cumulative transformation of decision weights and the corresponding partial-order cumula-
tive transformation set of alternatives. Subsequently, an adversarial Hasse diagram of the
partial-order cumulative transformation set is introduced. This not only streamlines the re-
dundant dominance structure among alternatives but also furnishes information on Pareto
optimal alternatives, suboptimal alternatives, and alternative clustering details. Utilizing
the IESS problem during the Zhengzhou heavy rain disaster as a case study, this paper
presents an illustrative demonstration of POPA and further validates its efficacy through
sensitivity and comparative analysis.

The fundamental contribution of this study lies in the introduction of POPA to address
the IESS. Methodologically, this study incorporates the partial-order theory into OPA for
the first time, achieving a partial-order extension of OPA. Specifically, POPA utilizes eas-
ily accessible and stable ranking data from experts as input, making it more suitable for
decisions that are characterized by a lack of sufficient and accurate data. POPA facilitates
the simultaneous determination of weights for experts, criteria, and alternatives, consid-
ering expert preference information without needing data standardization, expert opinion
aggregation, or pre-acquisition of criteria weights. Additionally, the partial-order cumulative
transformation and adversarial Hasse diagram generation of POPA, supported by theoreti-
cal derivation, can effectively identify potential Pareto optimal solutions and facilitate more
robust decision-making. Practically, this study utilizes POPA by integrating representative
criteria system to address IESS, offering insights and guidance for authentic decision-making
processes. Furthermore, POPA is not limited to IESS but is also applicable to any decision
scenario exhibiting similar characteristics.

Finally, it is essential to emphasize that the conclusions and findings of this study are
based on limited case scenarios. Consequently, there is a need for further exploration of
practical applications of POPA to validate its effectiveness. Notably, the implementation of
IESS based on POPA relies on the assumption of criteria independence. Therefore, future
studies could refine POPA, considering the interplay of criteria for a more accurate reflection
of real-world situations. Lastly, this study does not encompass the impact of decision-
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maker’s risk preferences on decision outcomes. Accordingly, future research is expected to
incorporate the risk preferences of decision-makers into the model extension of POPA.
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Appendix A.

Table A.1: Ranking of criteria and alternatives under criteria provided by experts of the case IESS

Expert ID Supplier ID SC1 SC2 SC3 SC4 SC5 SC6 SC7 SC8

E1 — 1 5 2 7 4 3 6 8
E2 — 1 2 4 8 6 3 5 7
E3 — 1 4 3 8 5 2 6 7
E4 — 2 5 1 6 7 4 3 8
E5 — 3 2 4 7 1 8 6 5

E1

A1 1 14 10 8 3 6 8 15
A2 9 10 6 10 15 11 11 5
A3 2 15 5 15 6 15 10 1
A4 10 7 4 11 9 5 3 9
A5 3 4 15 1 4 7 7 13
A6 4 13 3 12 7 8 1 6
A7 8 3 14 2 5 3 14 8
A8 7 9 12 3 10 12 4 4
A9 11 2 11 5 1 2 9 10
A10 6 12 1 14 11 13 2 3
A11 12 1 13 4 2 1 12 11
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Table A.1: Ranking of criteria and alternatives under criteria provided by experts of the case IESS

Expert ID Supplier ID SC1 SC2 SC3 SC4 SC5 SC6 SC7 SC8

A12 14 6 2 13 14 14 13 2
A13 5 11 7 9 8 4 15 12
A14 13 8 8 6 12 9 5 7
A15 15 5 9 7 13 10 6 14

E2

A1 13 1 4 11 3 1 15 10
A2 4 15 11 3 7 13 10 3
A3 1 14 10 9 12 14 9 6
A4 7 6 7 4 6 5 5 11
A5 2 9 12 5 5 8 11 7
A6 11 4 6 6 11 2 3 12
A7 15 2 3 12 10 9 4 15
A8 3 7 14 2 1 4 12 4
A9 14 3 2 15 9 6 1 14
A10 6 13 13 7 14 11 14 2
A11 12 5 1 14 15 3 2 13
A12 5 12 15 1 2 12 13 8
A13 10 8 5 13 8 7 8 5
A14 8 10 9 8 4 10 6 9
A15 9 11 8 10 13 15 7 1

E3

A1 7 9 14 1 7 13 15 6
A2 15 6 4 11 12 12 2 5
A3 2 14 15 2 2 3 10 12
A4 14 2 1 15 4 2 14 14
A5 1 13 13 7 3 14 9 1
A6 13 5 3 12 5 1 1 15
A7 6 10 12 6 11 10 12 4
A8 3 15 11 3 1 4 11 13
A9 12 1 2 14 10 9 3 7
A10 5 11 10 8 13 11 13 3
A11 10 3 5 4 9 5 4 10
A12 8 7 8 13 15 15 8 2
A13 11 4 6 5 6 6 5 8
A14 4 12 9 9 14 8 7 11
A15 9 8 7 10 8 7 6 9

E4

A1 11 6 8 14 15 14 5 4
A2 6 10 7 13 9 6 4 10
A3 15 5 12 8 4 7 10 7
A4 7 9 6 12 14 5 3 11
A5 10 7 3 5 3 13 2 3
A6 3 4 13 4 13 1 15 15
A7 12 1 9 9 2 2 9 14
A8 9 11 4 15 8 8 6 6
A9 5 8 11 6 10 12 11 5
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Table A.1: Ranking of criteria and alternatives under criteria provided by experts of the case IESS

Expert ID Supplier ID SC1 SC2 SC3 SC4 SC5 SC6 SC7 SC8

A10 2 14 5 7 6 9 7 8
A11 13 3 1 10 5 3 1 12
A12 8 12 10 1 11 10 14 2
A13 14 2 2 11 1 4 8 13
A14 1 13 15 2 12 15 13 1
A15 4 15 14 3 7 11 12 9

E5

A1 4 14 15 3 10 15 6 4
A2 14 7 1 14 4 10 11 5
A3 10 1 2 12 9 2 1 15
A4 3 12 11 1 15 14 12 6
A5 13 3 6 10 8 1 5 14
A6 9 8 10 11 14 4 15 9
A7 15 2 3 5 2 3 4 10
A8 2 13 12 2 1 9 10 1
A9 6 11 7 13 11 13 7 7
A10 8 9 8 15 5 5 8 13
A11 1 15 13 4 12 12 13 2
A12 11 4 4 9 6 6 2 12
A13 7 5 9 6 3 7 3 11
A14 12 6 5 7 7 8 14 8
A15 5 10 14 8 13 11 9 3

Appendix B.

Table B.1: Computed weight outcomes of the case IESS

Expert ID Supplier ID C1 C2 C3 C4 C5 C6 C7 C8

E1

A1 0.0119 0.0001 0.0009 0.0004 0.0016 0.0012 0.0004 0.0000
A2 0.0021 0.0004 0.0019 0.0003 0.0001 0.0005 0.0002 0.0006
A3 0.0083 0.0000 0.0022 0.0000 0.0009 0.0001 0.0003 0.0015
A4 0.0018 0.0006 0.0027 0.0002 0.0005 0.0015 0.0011 0.0003
A5 0.0065 0.0011 0.0001 0.0017 0.0013 0.0010 0.0005 0.0001
A6 0.0053 0.0002 0.0033 0.0002 0.0008 0.0009 0.0020 0.0005
A7 0.0026 0.0013 0.0002 0.0012 0.0011 0.0022 0.0001 0.0003
A8 0.0031 0.0004 0.0005 0.0009 0.0004 0.0004 0.0009 0.0007
A9 0.0014 0.0017 0.0007 0.0006 0.0030 0.0028 0.0004 0.0002
A10 0.0037 0.0002 0.0059 0.0001 0.0003 0.0003 0.0014 0.0008
A11 0.0011 0.0024 0.0004 0.0008 0.0021 0.0040 0.0002 0.0002
A12 0.0005 0.0007 0.0042 0.0001 0.0001 0.0002 0.0001 0.0010
A13 0.0044 0.0003 0.0016 0.0003 0.0006 0.0018 0.0000 0.0001
A14 0.0008 0.0005 0.0013 0.0005 0.0003 0.0007 0.0007 0.0004
A15 0.0002 0.0009 0.0011 0.0004 0.0002 0.0006 0.0006 0.0001
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Table B.1: Computed weight outcomes of the case IESS

Expert ID Supplier ID C1 C2 C3 C4 C5 C6 C7 C8

E2

A1 0.0012 0.0089 0.0020 0.0003 0.0016 0.0059 0.0001 0.0004
A2 0.0080 0.0002 0.0005 0.0012 0.0008 0.0004 0.0005 0.0014
A3 0.0178 0.0004 0.0007 0.0004 0.0003 0.0002 0.0006 0.0008
A4 0.0047 0.0028 0.0012 0.0010 0.0009 0.0022 0.0013 0.0003
A5 0.0125 0.0016 0.0004 0.0008 0.0011 0.0013 0.0004 0.0007
A6 0.0021 0.0040 0.0014 0.0007 0.0003 0.0042 0.0020 0.0002
A7 0.0004 0.0062 0.0024 0.0002 0.0004 0.0011 0.0016 0.0001
A8 0.0098 0.0023 0.0002 0.0016 0.0030 0.0027 0.0003 0.0011
A9 0.0007 0.0049 0.0031 0.0000 0.0005 0.0019 0.0036 0.0001
A10 0.0056 0.0006 0.0003 0.0006 0.0001 0.0007 0.0001 0.0018
A11 0.0016 0.0033 0.0045 0.0001 0.0001 0.0033 0.0025 0.0002
A12 0.0066 0.0008 0.0001 0.0022 0.0021 0.0005 0.0002 0.0006
A13 0.0026 0.0019 0.0017 0.0001 0.0006 0.0016 0.0008 0.0009
A14 0.0039 0.0013 0.0008 0.0005 0.0013 0.0009 0.0011 0.0005
A15 0.0032 0.0010 0.0010 0.0003 0.0002 0.0001 0.0009 0.0025

E3

A1 0.0023 0.0004 0.0001 0.0011 0.0005 0.0003 0.0000 0.0004
A2 0.0002 0.0007 0.0013 0.0001 0.0002 0.0004 0.0010 0.0005
A3 0.0062 0.0001 0.0001 0.0008 0.0012 0.0024 0.0002 0.0001
A4 0.0004 0.0016 0.0030 0.0000 0.0008 0.0031 0.0001 0.0001
A5 0.0089 0.0001 0.0002 0.0003 0.0010 0.0002 0.0003 0.0013
A6 0.0006 0.0008 0.0016 0.0001 0.0007 0.0045 0.0015 0.0000
A7 0.0028 0.0003 0.0003 0.0003 0.0002 0.0007 0.0001 0.0006
A8 0.0049 0.0000 0.0003 0.0006 0.0018 0.0020 0.0002 0.0001
A9 0.0008 0.0022 0.0021 0.0000 0.0003 0.0008 0.0008 0.0003
A10 0.0033 0.0003 0.0004 0.0002 0.0001 0.0005 0.0001 0.0007
A11 0.0013 0.0012 0.0011 0.0005 0.0003 0.0017 0.0007 0.0002
A12 0.0019 0.0006 0.0006 0.0001 0.0000 0.0001 0.0003 0.0009
A13 0.0010 0.0010 0.0009 0.0004 0.0006 0.0014 0.0006 0.0003
A14 0.0040 0.0002 0.0005 0.0002 0.0001 0.0010 0.0004 0.0001
A15 0.0016 0.0005 0.0008 0.0002 0.0004 0.0012 0.0005 0.0002

E4

A1 0.0004 0.0004 0.0016 0.0000 0.0000 0.0001 0.0009 0.0004
A2 0.0011 0.0002 0.0019 0.0001 0.0002 0.0006 0.0011 0.0001
A3 0.0001 0.0005 0.0006 0.0003 0.0005 0.0005 0.0004 0.0002
A4 0.0009 0.0003 0.0022 0.0001 0.0000 0.0007 0.0013 0.0001
A5 0.0005 0.0004 0.0039 0.0004 0.0006 0.0001 0.0017 0.0005
A6 0.0020 0.0006 0.0005 0.0005 0.0001 0.0018 0.0000 0.0000
A7 0.0003 0.0014 0.0013 0.0002 0.0007 0.0012 0.0004 0.0000
A8 0.0006 0.0002 0.0032 0.0000 0.0002 0.0004 0.0007 0.0003
A9 0.0013 0.0003 0.0008 0.0004 0.0002 0.0002 0.0003 0.0003
A10 0.0025 0.0001 0.0027 0.0003 0.0003 0.0003 0.0006 0.0002
A11 0.0002 0.0008 0.0071 0.0002 0.0004 0.0010 0.0024 0.0001
A12 0.0008 0.0001 0.0011 0.0012 0.0001 0.0003 0.0001 0.0006
A13 0.0001 0.0010 0.0050 0.0001 0.0010 0.0008 0.0005 0.0001
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Table B.1: Computed weight outcomes of the case IESS

Expert ID Supplier ID C1 C2 C3 C4 C5 C6 C7 C8

A14 0.0036 0.0001 0.0001 0.0008 0.0001 0.0000 0.0002 0.0009
A15 0.0016 0.0000 0.0003 0.0007 0.0003 0.0002 0.0002 0.0002

E5

A1 0.0053 0.0007 0.0002 0.0028 0.0053 0.0001 0.0019 0.0032
A2 0.0005 0.0047 0.0089 0.0002 0.0160 0.0007 0.0007 0.0027
A3 0.0018 0.0178 0.0062 0.0005 0.0064 0.0031 0.0059 0.0001
A4 0.0065 0.0016 0.0010 0.0051 0.0007 0.0002 0.0005 0.0022
A5 0.0008 0.0098 0.0028 0.0008 0.0078 0.0045 0.0022 0.0003
A6 0.0021 0.0039 0.0013 0.0006 0.0015 0.0020 0.0001 0.0013
A7 0.0002 0.0125 0.0049 0.0019 0.0249 0.0024 0.0027 0.0011
A8 0.0083 0.0012 0.0008 0.0036 0.0356 0.0008 0.0009 0.0071
A9 0.0037 0.0021 0.0023 0.0003 0.0042 0.0003 0.0016 0.0019
A10 0.0026 0.0032 0.0019 0.0001 0.0133 0.0017 0.0013 0.0005
A11 0.0119 0.0004 0.0006 0.0023 0.0032 0.0004 0.0004 0.0050
A12 0.0014 0.0080 0.0040 0.0009 0.0111 0.0014 0.0042 0.0006
A13 0.0031 0.0066 0.0016 0.0016 0.0195 0.0012 0.0033 0.0008
A14 0.0011 0.0056 0.0033 0.0013 0.0093 0.0010 0.0002 0.0016
A15 0.0044 0.0026 0.0004 0.0011 0.0023 0.0005 0.0011 0.0039
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